
Porting the Denovo Radiation Transport Code to Titan:
Lessons Learned

OLCF Titan Summit 2011

Wayne Joubert
Scientific Computing Group

Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

2

What is Denovo
•  Denovo is a radiation transport code used in

advanced nuclear reactor design
•  It solves for the density of particle flux in a 3-D

spatial volume such as a reactor
•  In particular, it solves the six-dimensional linear

Boltzmann equation (3-space, 2-angle, 1-energy)
•  Denovo scales up to 200K cores on ORNL’s 2.3PF

Jaguar system.
•  It is part of the CASL project (Consortium for

Advanced Simulation of Light Water Reactors) and
the SCALE code system (Standardized Computer
Analyses for Licensing Evaluation)

•  It was selected as an early port code for Titan

3

Denovo Algorithms
•  Primary algorithms: the discrete ordinates

method, 3-D sweep, GMRES linear solver and
various eigensolvers, e.g., Arnoldi

•  The execution time profile has a very prominent
peak: nearly all the execution time (80-99%) is
spent in a 3-D sweep algorithm.

•  Because of this, the 3-D sweep must be the
central focus of any effort to port Denovo to a
accelerator-based system

•  However, the sweep is a complex algorithm that
is difficult to parallelize efficiently.

4

3-D Sweep Algorithm: Description
•  Denovo is based on a 3-D structured grid
•  The data dependency for the sweep operation is

specified by a 4-point stencil
•  The result at every gridcell is dependent on the

result at the immediately lower gridcells in X, Y
and Z.

•  This induces a wavefront computation pattern – a
sequence of diagonal planes sweeping in from a
corner.

•  Thus, results at the far side of the grid cannot be
computed until results at the near side are
completed

•  For standard parallel grid decompositions, most
of the processors will be idle much of the time

5

Parallel Sweep: 1. High Level View

•  The KBA algorithm solves this problem in parallel using a novel 2-D
mapping of the problem to processors

•  The calculation is started at one corner of the grid, other processors start
work when their input data is available

6

Sweep Algorithm: 2. Per-Cell View

In addition to this “macro” view for the whole grid, at each gridcell there is
also significant work to be done:
The input vector for the sweep is initially stored with a “moments” axis. (1)
This moments axis must be transformed to an “angles” axis. (2) Then some
element-level calculations are done, for the element unknowns. (3) Finally,
the result must be transformed back to moments and the result stored in the
output vector.
Thus we have these steps at each gridcell:

1.  Load part of the input vector
2.  Do small matrix-vector product to convert from moments to angles
3.  Do discretization-related calculations on element unknowns
4.  Do small matrix-vector product to convert from angles to moments
5.  Store result in the output vector

7

GPU Architecture
•  The NVIDIA Fermi processor is a manycore

architecture with 512 compute cores.
•  They are programmed via threads.
•  Threads are arranged in groups of 32 (warps)

that compute in lockstep.
•  These are collected into threadblocks.
•  Threadblocks are independent and form a grid.
•  Programs access main (“global”) memory.
•  Programs can also use a faster, smaller

“shared” memory – a programmable cache.
•  Also L1 cache, L2 cache, registers.
•  Connected to CPU by PCIe-2 bus

Images courtesy NVIDIA

8

How to Program the Sweep on the GPU?

•  Sweep is a complex algorithm, with many dimensions. Directives may
not be flexible enough or expose enough hardware functionality to get the
needed performance.

•  NVIDIA support OpenCL, but going forward CUDA will be better
supported and more in-sync with new hardware features.

•  Thus use CUDA. Use C++ for consistency with Denovo base language.

•  Decide what language / parallel API to use to program the GPU.
•  Options:

1.  CUDA: a minor extension of C/C++ for GPU thread programming,
also available for Fortran 90

2.  OpenCL: a multi-vendor standard similar to CUDA
3.  Compiler directives: similar to OpenMP (PGI, CAPS, Cray, ...)

9

Refactor or Rewrite?

•  Would prefer to refactor existing code, if possible.
•  However, the current Denovo sweep has multiply-nested loop structure

spanning multiple levels of the call tree. This needs to be permuted,
which would require major code restructuring. Also, memory access
pattern is not properly localized for the GPU.

•  Number of lines of code for the sweep not huge (~ thousands).
•  Thus, a rewrite probably easier.

10

Sweep Performance Characteristics

•  In order to port to GPU, need to understand the performance behavior of
the sweep algorithm in detail
–  Data access pattern
–  How much time spent in flops, memory access, communication
–  Which problem dimensions can be thread-parallelized on the GPU
–  Is there enough space in the registers, caches to get the needed data reuse

•  Rethink the algorithm from first principles. How do we restructure the
algorithm to improve data reuse, expose thread parallelism?

11

A Sweep Code Performance Model
•  It can be very useful to have a formula that expresses the runtime of a

code in terms of:
•  Flop counts, memory access counts, message counts, ...
•  Hardware characteristics: clock speeds, bandwidths, ...

•  Helps guide the parallelization / optimization process.
•  Can understand performance tradeoffs for design decisions before writing

any code.
•  Understand what dominates (floating point operations, PCIe-2 transfer,

memory bandwidth, etc.) – what is most in need of optimization.
•  Also after writing the code helps diagnose whether performance of the

code is where it should be.

12

Sweep Code Programming Model/Style
•  Code is in C++.
•  Decided to implement a single code that can run on both CPU and GPU.

Makes sense for maintainability, also greatly helps debugging.
•  Following older example of MPI, try to put CUDA-related code in one

place, e.g., facade class. Want to be ready for unknown programming
models coming in the future.

13

Mapping the Algorithm to the GPU
We have many candidate dimensions for parallelism:
space (3), energy, moment/angle, octant, and also
unknown (4 unknowns per gridcell for this
discretization).
We are told by NVIDIA that we need 4K-8K threads for
the GPU to keep all GPU streaming multiprocessors
busy and cover various latencies.
Also need the right kind of parallelism – proper
decoupling of data.
Also must have good memory access patterns (reuse of
data loaded from global memory, coalesced stride-1
memory references, good use of registers, shared
memory, caches on the GPU).
Approach: explore each problem dimension for
potential thread parallelism.

14

1. Parallelism in Energy
•  Denovo exposes energy as a parallel dimension.
•  Values for different energies are entirely independent in the 3-D sweep,

thus the algorithm is embarrassingly parallel along this axis (!).
•  Model problem has 256 energy groups – this helps, but we need to look

further in order to get to 4K-8K threads.
•  Also need to use some of this 256 for node parallelism.

15

2. Parallelism in Octant
•  Algorithm requires sweeps from 8 different directions.
•  Sweep directions are independent, thus another 8X thread parallelism (!).
•  Small issue: different octants update the same output vector, so we need

to schedule properly to avoid write conflicts.

16

3. Parallelism in Space

•  We have this recursion, as mentioned before, that makes the
computations non-independent.

•  However, the global KBA algorithm can be applied at this small scale (!).
•  Set up block wavefronts, assign blocks to threads.
•  Sync between block wavefronts.

17

Performance

•  With this paralleization scheme, code performed at only about 1% of peak
flop rate, much lower than predicted by the performance model

•  Reason: excessive use of registers caused spillage to main memory, thus
poor performance

•  Needed to find more/better axes of parallelism

18

4. Parallelism in Angle, Moment

•  A new strategy to parallelize the moment/angle axes at the gridcell level
– map these axes to CUDA threads in-warp.

•  Small dense matrix-vector products are perfect for thread parallelism –
store vector in shared memory, relieve the register pressure.

•  The two small matrices are the same across all gridcells (!), so they can
be retained in L1 cache, to reduce a potentially high source of memory
traffic.

19

Summary of Mapping of Dimensions

GPU
Compute
Hierarchy

Thread

 Warp

Thread
 block

 Grid

registers 32 threads
execute in
lockstep

up to 48 warps
access shared memory;

can sync warps

fully independent
threadblocks

Denovo
Problem
Dimensions

octant
energy

fully
decoupled

space
use KBA;
need sync

moment
angle
use

threads
in a warp

per-gridcell
unknowns

tightly
coupled

20

Results: Test Problem

•  32x32x128 gridcells
•  16 energy groups
•  16 moments
•  256 angles
•  Linear discontinuous elements –

4 unknowns per gridcell

21

Results: Sweep GPU Performance

AMD	 Istanbul	 	 1	
core	

NVIDIA	 C2050	
Fermi	

Ra<o	

Kernel	 compute	 -me	 171	 sec	 3.2	 sec	 54X	
PCIe-‐2	 -me	 (faces)	 -‐-‐	 1.1	 sec	

TOTAL	 171	 sec	 4.2	 sec	 40X	

•  Single core (AMD Istanbul) / single GPU (Fermi C2050) comparison

0
20
40
60
80

100
120
140
160
180

AMD	 Istanbul,	 1	
core

NVIDIA	 C2050	
Fermi

NVIDIA Fermi is 40X faster
than single Opteron core

22

Observations

•  40X faster than Istanbul core.
•  Istanbul is 6-core, so Fermi about 7X faster than the entire Istanbul processor.
•  For both CPU and GPU, code attains about 10% of peak flop rate – this is

considered good for this algorithm.
•  Expect more optimizations to be possible going forward.

23

Conclusions: Lessons Learned

1.  Major code restructurings were required – this is required regardless of
the parallel API used.

2.  CUDA was used to get good performance for this complex algorithm –
directives add an abstraction layer, may not expose all needed
performance. Other codes may be different.

3.  Isolating CUDA-specific constructs in one place in the code is good
defensive programming to prepare for programming models that may
change

24

Conclusions: Lessons Learned (2)

4.  Programming in a dual CPU/GPU programming style helps reduce code
redundancy and helps with debugging.

5.  It is challenging to negotiate conflict between heavy code optimization
and good SWE practice – it’s not always easy to have both, in general
and specifically using CUDA.

25

Conclusions: Lessons Learned (3)

6.  It is helpful to develop a performance model based on flop rate, memory
bandwidth and algorithm tuning knobs, to guide mapping of the
algorithm to the GPU.

7.  It is worthwhile to write small codes to test performance for simple
operations, incorporate this insight into algorithm design.

8.  It is a challenge to understand what the processor is doing, under the
abstractions.

9.  It is difficult to know beforehand what will be the best strategy for
parallelization or what will be the final outcome – a porting effort could
easily fail if the GPU has inadequate register space for the planned
algorithm mapping.

26

Conclusions: Lessons Learned (4)

10.  Performance can be very sensitive to small tweaks in the code – must
determine empirically the best way to write the code.

11.  Often, the GPU porting effort for the algorithm also improves
performance on the CPU (in this case, in fact, 2X).

12.  Expert help is useful, e.g., NVIDIA forums.

27

Acknowledgements

•  Denovo development team: Tom Evans, Greg Davidson, Josh Jarrell,
Chris Baker

•  Cray: Kevin Thomas
•  NVIDIA: John Roberts, Cyril Zeller, Paulius Micikevicius
•  OLCF compute resources: JaguarPF, Yona, Lens

28

Supplementary Slides

29

Titan Tier-1 Readiness Apps

App	 Science	 Area	

LSMS	 Materials	

PFLOTRAN	 Earth	 Sciences	

CAM-‐HOMME	 Climate	

S3D	 Combus-on	

LAMMPS	 Biosciences	

Denovo	 Nuclear	 Energy	

The OLCF has selected 6 strategic science
applications for an early readiness port to Titan
This talk concerns one of these applications:
“Denovo”

30

Algorithm Stress Points

1.  Wavefront startup time when not all processors are active yet.
2.  Communication latency for many small face messages.
3.  Structuring the algorithm to get good performance at the gridcell level

31

Optimizing for Memory Traffic
•  Traditionally, algorithm designers optimize

algorithms to reduce the (floating point) operation
count.

•  The more appropriate metric going forward is
memory accesses (register or cache misses).
Memory access is the bottleneck.

•  Guiding principle: reduce memory traffic by doing
as much work as possible with data values that
are loaded into the CPU from memory.

Example: array copy:
GOOD:

for (i=0; i<N; ++i) {
 a[i] = b[i];
 c[i] = b[i];
}
N loads, 2N stores

BAD:

for (i=0; i<N; ++i) a[i] = b[i];
for (i=0; i<N; ++i) c[i] = b[i];

2N loads, 2N stores

Processor

Registers

L1 Cache

L2 Cache

Memory

Memory
Access

32

Potential Axes of Parallelism

1.  Space: X, Y, Z
2.  Unknowns per gridcell, depending on discretization (4)
3.  Energy group
4.  Angle
5.  Moment
6.  Octant

33

Further Work

•  Analysis of code performance with help from NVIDIA revealed that more
thread parallelism is needed. To address this, a more efficient implementation
of spatial thread parallelism is being implemented.

•  Actual use cases of Denovo sometimes involve only one moment and one
unknown/gridcell, leaving the GPU warp underpopulated. To address this, a
new variant is being developed which applies in-warp parallelism to the energy
and spatial axes, dealing with the sync issues for spatial parallelism.

